399 research outputs found

    Structure Theorem and Isomorphism Test for Graphs with Excluded Topological Subgraphs

    Get PDF
    We generalize the structure theorem of Robertson and Seymour for graphs excluding a fixed graph HH as a minor to graphs excluding HH as a topological subgraph. We prove that for a fixed HH, every graph excluding HH as a topological subgraph has a tree decomposition where each part is either "almost embeddable" to a fixed surface or has bounded degree with the exception of a bounded number of vertices. Furthermore, we prove that such a decomposition is computable by an algorithm that is fixed-parameter tractable with parameter ∣H∣|H|. We present two algorithmic applications of our structure theorem. To illustrate the mechanics of a "typical" application of the structure theorem, we show that on graphs excluding HH as a topological subgraph, Partial Dominating Set (find kk vertices whose closed neighborhood has maximum size) can be solved in time f(H,k)⋅nO(1)f(H,k)\cdot n^{O(1)} time. More significantly, we show that on graphs excluding HH as a topological subgraph, Graph Isomorphism can be solved in time nf(H)n^{f(H)}. This result unifies and generalizes two previously known important polynomial-time solvable cases of Graph Isomorphism: bounded-degree graphs and HH-minor free graphs. The proof of this result needs a generalization of our structure theorem to the context of invariant treelike decomposition

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page

    Parameterized Directed kk-Chinese Postman Problem and kk Arc-Disjoint Cycles Problem on Euler Digraphs

    Full text link
    In the Directed kk-Chinese Postman Problem (kk-DCPP), we are given a connected weighted digraph GG and asked to find kk non-empty closed directed walks covering all arcs of GG such that the total weight of the walks is minimum. Gutin, Muciaccia and Yeo (Theor. Comput. Sci. 513 (2013) 124--128) asked for the parameterized complexity of kk-DCPP when kk is the parameter. We prove that the kk-DCPP is fixed-parameter tractable. We also consider a related problem of finding kk arc-disjoint directed cycles in an Euler digraph, parameterized by kk. Slivkins (ESA 2003) showed that this problem is W[1]-hard for general digraphs. Generalizing another result by Slivkins, we prove that the problem is fixed-parameter tractable for Euler digraphs. The corresponding problem on vertex-disjoint cycles in Euler digraphs remains W[1]-hard even for Euler digraphs

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Does Treewidth Help in Modal Satisfiability?

    Full text link
    Many tractable algorithms for solving the Constraint Satisfaction Problem (CSP) have been developed using the notion of the treewidth of some graph derived from the input CSP instance. In particular, the incidence graph of the CSP instance is one such graph. We introduce the notion of an incidence graph for modal logic formulae in a certain normal form. We investigate the parameterized complexity of modal satisfiability with the modal depth of the formula and the treewidth of the incidence graph as parameters. For various combinations of Euclidean, reflexive, symmetric and transitive models, we show either that modal satisfiability is FPT, or that it is W[1]-hard. In particular, modal satisfiability in general models is FPT, while it is W[1]-hard in transitive models. As might be expected, modal satisfiability in transitive and Euclidean models is FPT.Comment: Full version of the paper appearing in MFCS 2010. Change from v1: improved section 5 to avoid exponential blow-up in formula siz

    Visual Ontology Cleaning: Cognitive Principles and Applicability

    Get PDF
    In this paper we connect two research areas, the Qualitative Spatial Reasoning and visual reasoning on ontologies. We discuss the logical limitations of the mereotopological approach to the visual ontology cleaning, from the point of view of its formal support. The analysis is based on three different spatial interpretations wich are based in turn on three different spatial interpretations of the concepts of an ontology.Ministerio de Educación y Ciencia TIN2004-0388
    • …
    corecore